Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.978
Filtrar
1.
Plant Physiol Biochem ; 210: 108645, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38663266

RESUMO

Silver nanoparticles (AgNPs) have an important role in agriculture since they have several applications that are essential for the enhanced yield of crops. Furthermore, they act as nano-pesticides, delivering a proper dose to the target plants without releasing unwanted pesticides into the environment. Upholding the sustainable nano agriculture, biocompatible silver nanoparticles were synthesised utilising Piper colubrinum Link. leaf extract. Different characterization methods (TEM, EDX and XRD) revealed that AgNPs were successfully formed and coated with phytochemicals that constituted the plant extract. Enhanced root development during the early post-germination phase is crucial for the success of direct seeding in rice cultivation. The effects of AgNPs on the growth of plant roots are poorly understood. In this work, Piper colubrinum mediated AgNPs-primed Oryza sativa L. seeds, at various concentrations (0, 50, 80, 100, and 150 mg/L), exceeded typical hydro-primed controls in terms of germination and seedling growth. Oryza sativa L. treated with AgNPs at a concentration of 80 mg/L enhanced root elongation. Additionally, exposure to AgNPs significantly enhanced the content of chlorophyll. The Kyoto Encyclopedia of Genes and Genomes (KEGG) study revealed that the identified pathways like Aromatic amino acid biosynthesis genes, Fatty acid biosynthesis genes, and Carotenoid biosynthesis genes were the most enriched. Some of the genes associated with root growth and development like glucosyltransferases, Glutathione pathway genes, Calcium-ion binding pathway genes, Peroxidase precursor and Nitrilase-associated protein were up regulated. Overall, AgNPs treatments promoted seed germination, growth, chlorophyll content and gene expression patterns, which might be attributable to the beneficial effects of AgNPs on rice.

2.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637784

RESUMO

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Assuntos
Alternaria , Nanopartículas Metálicas , Quercus , Solanum lycopersicum , Prata/química , Nanopartículas Metálicas/química , Antifúngicos , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Difração de Raios X , Antibacterianos
3.
Antibiotics (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666988

RESUMO

Currently available silver-based antiseptic wound dressings have limited patient effectiveness. There exists a need for wound dressings that behave as comfortable degradable hydrogels with a strong antibiotic potential. The objectives of this project were to investigate the combined use of gallates (either epi gallo catechin gallate (EGCG), Tannic acid, or Quercetin) as both PVA crosslinking agents and as potential synergistic antibiotics in combination with silver nanoparticles. Crosslinking was assessed gravimetrically, silver and gallate release was measured using inductively coupled plasma and HPLC methods, respectively. Synergy was measured using 96-well plate FICI methods and in-gel antibacterial effects were measured using planktonic CFU assays. All gallates crosslinked PVA with optimal extended swelling obtained using EGCG or Quercetin at 14% loadings (100 mg in 500 mg PVA with glycerol). All three gallates were synergistic in combination with silver nanoparticles against both gram-positive and -negative bacteria. In PVA hydrogel films, silver nanoparticles with EGCG or Quercetin more effectively inhibited bacterial growth in CFU counts over 24 h as compared to films containing single agents. These biocompatible natural-product antibiotics, EGCG or Quercetin, may play a dual role of providing stable PVA hydrogel films and a powerful synergistic antibiotic effect in combination with silver nanoparticles.

4.
Gels ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667653

RESUMO

The emergence of the global pandemic (COVID-19) has directed global attention towards the importance of hygiene as the primary defense against various infections. In this sense, one of the frequent recommendations of the World Health Organization (WHO) is regular hand washing and the use of alcohol-based hand sanitizers. Ethanol is the most widely used alcohol due to its effectiveness in eliminating pathogens, ease of use, and widespread production. However, artisanal alcohol, generally used as a spirit drink, could be a viable alternative for developing sanitizing gels. In this study, the use of alcohol "Puntas", silver nanoparticles, and saponins from quinoa was evaluated to produce hand sanitizer gels. The rheological, physicochemical, and antimicrobial properties were evaluated. In the previous assays, the formulations were adjusted to be similar in visual viscosity to the control gel. A clear decrease in the apparent viscosity was observed with increasing shear rate, and an inversely proportional relationship was observed with the amount of ethyl alcohol used in the formulations. The flow behavior index (n) values reflected a pseudoplastic behavior. Oscillatory dynamic tests were performed to analyze the viscoelastic behavior of gels. A decrease in storage modulus (G') and an increase in loss modulus (G″) as a function of the angular velocity (ω) was observed. The evaluation of pH showed that the gels complied with the requirements to be in contact with the skin of the people, and the textural parameters showed that the control gel was the hardest. The use of artisan alcohol could be an excellent alternative to produce sanitizer gel and contribute to the requirements of the population.

5.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668204

RESUMO

The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root rot fungi of common beans (Phaseolus vulgaris L.), including Macrophomina phaseolina, Pythium graminicola, Rhizoctonia solani, and Sclerotium rolfsii. Among the eleven biosynthesized AgNPs, those synthesized using Alhagi graecorum plant extract displayed the highest efficacy in suppressing those fungi. The findings showed that using AgNPs made with A. graecorum at a concentration of 100 µg/mL greatly slowed down the growth of mycelium for R. solani, P. graminicola, S. rolfsii, and M. phaseolina by 92.60%, 94.44%, 75.93%, and 79.63%, respectively. Additionally, the minimum inhibitory concentration (75 µg/mL) of AgNPs synthesized by A. graecorum was very effective against all of these fungi, lowering the pre-emergence damping-off, post-emergence damping-off, and disease percent and severity in vitro and greenhouse conditions. Additionally, the treatment with AgNPs led to increased root length, shoot length, fresh weight, dry weight, and vigor index of bean seedlings compared to the control group. The synthesis of nanoparticles using A. graecorum was confirmed using various physicochemical techniques, including UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. Collectively, the findings of this study highlight the potential of AgNPs as an effective and environmentally sustainable approach for controlling root rot fungi in beans.

6.
Int J Biol Macromol ; : 131676, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641271

RESUMO

This research aimed to synthesise and characterise chitosan/fluoride functionalised silver nanoparticles (AgNPs) reduced with white tea (Camellia sinensis, WT) and evaluate the effects of WT_AgNPs application on demineralised dentine. The WT_AgNPs were characterised to determine their molecular composition, organic matter content, crystallite size, and degree of aggregation. Forty human molars were randomly assigned to different control groups: sound dentine (SD) and demineralised dentine (DD), and experimental groups: WT_AgNPs, WT_AgNPs_NaF, and WT_AgNPs_CHS. Then, the nanoparticles were applied to the DD control group to evaluate the chemical, crystallographic, and microstructural characteristics of treated-dentine. In addition, a three-point bending test was employed to assess dentine's mechanical response. The WT_AgNPs showed molecular groups related to various organic compounds, potentially acting as reducing and capping agents. All AgNPs presented spherical shapes with crystal sizes of approximately 20 nm. The application of WT_AgNPs indicated a higher degree of mineralisation and crystallites sizes of hydroxyapatite than the DD group. SEM images showed that WT_AgNPs presented different degrees of aggregation and distribution patterns on the surface of the demineralized dentine. The dentine flexural strength was significantly increased in all WT_AgNPs groups compared to control groups. The application of WT_AgNPs demonstrated remineralising and strengthening potential on demineralised dentine.

7.
Acta Trop ; : 107224, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643822

RESUMO

Green plant-based silver nanoparticles (GP-Ag NPs) have contributed to the development of ecological technologies with low environmental impact and safer for human health, as well as demonstrating potential for the control of vectors and intermediate hosts. However, knowledge about its toxicity in the early stages of gastropod development remains scarce. Therefore, the current study aimed to investigate the toxicity of GP-Ag NPs synthesized from Croton urucurana leaf extracts in snail species Biomphalaria glabrata, which is an intermediate host for Schistosoma mansoni parasite. GP-Ag NPs were synthesized using two types of plant extracts (aqueous and hydroethanolic) and characterized using multiple techniques. Bioassays focused on investigating GP-Ag NPs and plant extracts were carried out with embryos and newly hatched snails, for 144 h and 96 h, respectively; toxicity was analyzed based on mortality, hatching, development inhibition, and morphological changes. Results have shown that both GP-Ag NPs were more toxic to embryos and newly hatched snails than the investigated plant extracts. GP-Ag NPs deriving from aqueous extract have higher molluscicidal activity than those deriving from hydroethanolic extract. Both GP-Ag NPs induced mortality, hatching delay, development inhibition, and morphological changes (i.e., hydropic embryos), indicating their molluscicidal activities. Moreover, embryos were more sensitive to GP-Ag NPs than newly hatched snails. Thus, the toxicity of GP-Ag NPs to freshwater snails depends on the type of extracts and the snail's developmental stages. These findings can contribute to the development of green nanobiotechnologies applicable to control snails of medical importance.

8.
ACS Appl Mater Interfaces ; 16(15): 18300-18310, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574271

RESUMO

To tackle the proliferation of pathogenic microorganisms without relying on antibiotics, innovative materials boasting antimicrobial properties have been engineered. This study focuses on the development of graphene oxide/silver (GO/Ag) nanocomposites, derived from partially reduced graphene oxide adorned with silver nanoparticles. Various nanocomposites with different amounts of silver (GO/Ag-1, GO/Ag-2, GO/Ag-3, and GO/Ag-4) were synthesized, and their antibacterial efficacy was systematically studied. The silver nanoparticles were uniformly deposited on the partially reduced graphene oxide surface, exhibiting spherical morphologies with an average size of 25 nm. The nanocomposites displayed potent antibacterial properties against both gram-positive bacteria (S. aureus and B. subtilis) and gram-negative bacteria (E. coli and S. enterica) as confirmed by minimum inhibition concentration (MIC) studies and time-dependent experiments. The optimal MIC for Gram-positive bacteria was 62.5 µg/mL and for Gram-negative bacteria was 125 µg/mL for the GO/Ag nanocomposites. Bacterial cells that encountered the nanocomposite films exhibited significantly greater inhibitory effects compared to those exposed to conventional antibacterial materials. Furthermore, the cytotoxicity of these nanocomposites was assessed using human epithelial cells (HEC), revealing that GO/Ag-1 and GO/Ag-2 exhibited lower toxicity levels toward HEC and remained compatible even at higher dilution rates. This study underscores the potential of GO/Ag-based nanocomposites as versatile materials for antibacterial applications, particularly as biocompatible wound dressings, offering promising prospects for wound healing and infection control.


Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Humanos , Prata/farmacologia , Staphylococcus aureus , Escherichia coli , Óxidos/farmacologia , Antibacterianos/farmacologia , Grafite/farmacologia
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124204, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569391

RESUMO

The rapid and accurate detection of drug molecules in pharmaceutical formulations and biological samples is of paramount importance. In this research article, we present a novel colorimetric sensor based on carbon dots decorated silver nanoparticles (CDs/AgNPs) for the rapid detection of ketotifen (KTF), a widely used antihistamine drug. The CDs were synthesized via a facile one-step microwave-assisted method and subsequently conjugated onto AgNPs through a simple adsorption process, forming a stable CDs/AgNPs composite. The resulting composite exhibited unique optical properties, including a strong absorption peak at 410 nm with remarkable intensity reduction and color changes upon the addition of KTF. The developed colorimetric sensor exhibited a wide linear range of 3.0-40.0 µg mL-1 (R2 = 0.9996), with a %RSD of 2.41, and a low limit of detection (LOD) of 0.981 µg mL-1. Furthermore, the sensor's practical applicability was evaluated by successfully detecting KTF in eye drops and artificial aqueous humor, demonstrating a remarkable percentage recovery exceeding 96.0 %. Finally, a comprehensive evaluation of the greenness and blueness of the method was performed using analytical eco-scale, GAPI, AGREEprep, and BAGI tools. The results of these assessments indicate its exceptional sustainability. Overall, the proposed method holds significant potential for applications in pharmaceutical quality control and therapeutic monitoring, contributing to improved patient care and drug safety in the field of ophthalmology.


Assuntos
Nanopartículas Metálicas , Humanos , Prata , Cetotifeno , Colorimetria/métodos , Carbono , Soluções Oftálmicas , Humor Aquoso
10.
Chemosphere ; 355: 141836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561160

RESUMO

The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.


Assuntos
Hypocreales , Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Proteoma , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/toxicidade , Antibacterianos/química , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
11.
Biomed Microdevices ; 26(2): 21, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558326

RESUMO

Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Dengue , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Ouro/química , Prata/química , Técnicas Biossensoriais/métodos , Eletrodos , Dengue/diagnóstico , Limite de Detecção
12.
Heliyon ; 10(7): e28309, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560218

RESUMO

In the present investigation, with an effort to provide appropriate material for future applications, we have touched on two viable advancement targets: the production of silver nanoparticles (Ag-NPs) employing an ultrasonic approach and the use of Ag-NPs in environmental remediation. A green economical method was involved to prepare Ag-NPs using butyl acrylate as a stabilizer. The following techniques were used for analysing Ag-NPs: energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and Fourier transformed infrared (FT-IR) spectroscopy. X-ray diffraction (XRD) analysis for the lattice characteristics showed that Ag-NPs have a face-centered structure with an average crystallite size of 9.51-11.83 nm. FE-SEM and TEM analysis were used for morphological investigations, and revealed that Ag-NPs had a spherical shape with an average particle size of 16.27 nm. The EDX profile displayed a strong signal at ∼3.0 keV, which indicated that the samples comprised silver. UV-Visible spectrophotometer with the absorption maximum occurring between 401 and 411 nm further confirmed the formation of Ag-NPs. The dye degradation effect of synthesized Ag-NPs on methylene blue and Rhodamine B was analyzed to assess their ability for environmental remediation, and results showed that around 100% of the dye degradation effect. This study has provided a most plausible mechanism for the dye degradation.

13.
Sci Rep ; 14(1): 7971, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575637

RESUMO

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Animais , Peróxido de Hidrogênio/farmacologia , Prata/farmacologia , Pesqueiros , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Água/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Aeromonas hydrophila
14.
Microsc Res Tech ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563156

RESUMO

The environment preservation has been an important motivation to find alternative, functional, and biodegradable materials to replace polluting petrochemicals. The production of nonbiodegradable face masks increased the concentration of microplastics in the environment, highlighting the need for sustainable alternatives, such as the use of local by-products to create efficient and eco-friendly filtering materials. Furthermore, the use of smart materials can reduce the risk of contagion and virus transmission, especially in the face of possible mutations. The development of novel materials is necessary to ensure less risk of contagion and virus transmission, as well as to preserve the environment. Taking these factors into account, 16 systems were developed with different combinations of precursor materials (holocellulose, polyaniline [ES-PANI], graphene oxide [GO], silver nanoparticles [AgNPs], and activated carbon [AC]). Adsorption tests of the spike protein showed that the systems containing GO and AC were the most efficient in the adsorption process. Similarly, plate tests conducted using the VSV-IN strain cultured in HepG2 cells showed that the system containing all phases showed the greatest reduction in viral titer method. In agreement, the biocompatibility tests showed that the compounds extracted from the systems showed low cytotoxicity or no significant cytotoxic effect in human fibroblasts. As a result, the adsorption tests of the spike protein, viral titration, and biocompatibility tests showed that systems labeled as I and J were the most efficient. In this context, the present research has significantly contributed to the technological development of antiviral systems, with improved properties and increased adsorption efficiency, reducing the viral titer and contributing efficiently to public health. In this way, these alternative materials could be employed in sensors and devices for filtering and sanitization, thus assisting in mitigating the transmission of viruses and bacteria. RESEARCH HIGHLIGHTS: Sixteen virus adsorbent systems were developed with different combinations of precursor materials (holocellulose, polyaniline (ES-PANI), graphene oxide (GO), silver nanoparticles (AgNPs), and activated carbon (AC)). The system that included all of the nanocomposites holocellulose, PANI, GO, AgNPs, and AC showed the greatest reduction in viral titration. The biocompatibility tests revealed that all systems caused only mild or moderate cytotoxicity toward human fibroblasts.

15.
Int J Biol Macromol ; : 131783, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657933

RESUMO

The bioavailability of curcumin (CUR), a highly lipophilic and commonly used anticancer drug, is mainly affected by its poor solubility in aqueous environment and quick metabolism. These challenges can be met by employing delivery systems. Nanocomposite materials have been used as delivery systems to enhance the solubility and dissolution rate of the drug. This study aims to develop dextran-graft-poly(4-acryloylmorpholine) silver nanocomposite using a microwave-assisted method to evaluate its drug-release efficiency and antimicrobial activity. The materials were characterized by FT-IR, FE-SEM, EDS, XRD, HR-TEM, TGA, and BET techniques. Drug loading and release efficiency were evaluated using CUR as the model drug. The swelling and drug release studies were conducted in buffer solutions of pH 1.2 and 7.4. Staphylococcus aureus and Escherichia coli were employed to evaluate the antibacterial activity. The cytotoxicity was assessed by MTT assay against the breast MCF-10. Higher swelling and drug release were observed at pH 1.2 than 7.4. Nanocomposite hydrogel exhibited antibacterial activity against the tested bacterial strains. Cytotoxicity study proved the safety of the developed matrix. The results suggest the developed nanocomposite hydrogel to be a promising polymer matrix for the sustained release of CUR for cancer treatment that requires infectious control.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38658510

RESUMO

The production of antibacterial colored textiles using nanomaterials (NMs) has become an ideal goal from both a research and industrial perspective. In this study, the clean synthesis and characterization of silver nanoparticles (AgNPs) on polyamide fabrics were performed using mullein extract for the first time. Natural dyes were extracted from mullein leaves using an ultrasonic method, with an optimal amount of 15 g/L. The synthesized AgNPs in different ratios of mullein extract and Ag ions were analyzed (using UV-visible spectroscopy) and dynamic light scattering (DLS). It was found that AgNPs synthesized with a ratio of 1:4 of mullein extract: to Ag ions had a diameter of 85 nm. The active site groups of the synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR). Nylon fabrics dyed with different ratios of mullein extract and Ag ions exhibited acceptable color strength values (K/S) of 3.36. Furthermore, the reduction in bacterial growth for dyed fabrics improved with an increase in the ratio of Ag ions, with a 100% reduction observed for a sample dyed with mullein extract: Ag ions at a ratio of 1:4. Overall, this method offers a simple, low-cost, and compatible process with environment without the consumption of any chemicals to producing nylon with acceptable antibacterial and dyeing properties.

17.
ChemistryOpen ; : e202300223, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647351

RESUMO

Silver/polymeric vesicle composite nanoparticles with good antibacterial properties were fabricated in this study. Silver nanoparticles (AgNPs) were prepared in situ on cross-linked vesicle membranes through the reduction of silver nitrate (AgNO3) using polyvinylpyrrolidone (PVP) via coordination bonding between the Ag+ ions and the nitrogen atoms on the vesicles. X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), and transmission electron microscopy (TEM) analyses confirmed the formation of AgNPs on the vesicles. The antibacterial test demonstrated good antibacterial activity against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) for the produced AgNP-decorated vesicles. The minimum inhibitory concentration (MIC) values of the AgNP-decorated vesicles for E. coli and S. aureus were 8.4 and 9.6 µg/mL, respectively. Cell viability analysis on the A549 cells indicated that the toxicity was low when the AgNP concentrations did not exceed the MIC values, and the wound healing test confirmed the good antibacterial properties of the AgNP-decorated vesicles.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38652435

RESUMO

The association of silver nanoparticles (AgNps) to sealant agent Palaseal® can be a promising alternative for complete denture wearers who may develop denture stomatitis (DS). The study aimed to evaluate the anti-Candida and biocompatible potential of silver nanoparticles synthesized by three routes associated with denture glaze to prevent and/or treat oral candidiasis. Surface acrylic resin specimens were treated with different associations of glaze with AgNps (VER+AgUV, VER+AgTurk and VER+AgGm). As controls, specimens were treated with glaze+nystatin (VER+Nyst), glaze only (VER) or submerged in PBS (PBS). Afterwards, Candida albicans biofilm was developed for 24 h, 15 d and 30 d. Subsequently, the biofilm was quantified by CFU/mL, XTT assay and confocal laser scanning microscopy. Fibroblasts were submitted to conditioned medium with the same associations for 24, 48 and 72 h and LIVE/DEAD® viability test was carried out. Regardless of the period, there was a significant reduction (p < 0.01) of viable fungal cells load, as well as inhibition of fungal metabolic activity, in specimens treated with glaze+AgNps associations, compared to VER and PBS. The anti-Candida effects of the associations were similar to the VER+Nyst group, with emphasis on VER+AgGm, which showed the highest percentage values of non-viable fungal cells maintained over time. The associations did not prove toxicity to fibroblasts. The AgNps exerted antimicrobial activity against C. albicans biofilms and are biocompatible. The most effective results were achieved with the association of glaze+silver nanoparticles synthesized by the green chemistry method (AgGm), proving to be an innovative alternative in the management of DS.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38653256

RESUMO

The effects of ion exchange time and temperature on the optical properties and plasmonic response of silver ion exchanged soda-lime silicate glass were investigated using scanning electron microscopy (SEM) in energy dispersive spectrometry (EDS) configuration, m-lines spectroscopy, photoluminescence spectroscopy, and UV-visible absorption spectroscopy. SEM analyses in EDS mode provided profiles of silver oxide molar concentration. These profiles were directly correlated to the silver diffusion coefficient using an adjustment procedure. The effective indices of ion exchanged glasses measured by the standard prism coupling technique (m-lines) allowed access to refractive index distributions in ion exchange regions. These ion-exchanged glasses underwent evaluation to determine their potential suitability for use in multimode planar systems.The photoluminescence results acquired after ion exchange demonstrated that the creation of Ag0 atoms from Ag+ ions was responsible for the decline and quenching of photoluminescence intensity at ion exchange times and temperatures increase. Silver nanoparticles were generated in the samples subjected to ion exchange at 480°C without the need for post-exchange treatments. The emergence of the plasmon resonance (SPR) band around 427 nm in the optical absorption spectra confirmed the formation of Ag nanoparticles in annealed glasses. Estimates of the UV-visible absorption spectra indicated an average size of silver nanoparticles ranging from 1.8 to 2.4 nm.

20.
Int J Biol Macromol ; 267(Pt 1): 131288, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565365

RESUMO

The unpredictable release behavior of metal nanoparticles/metal ions from metal nanoparticle-loaded hydrogels, without a suitable in situ detection method, is resulting in serious cytotoxicity. To optimize the preparation and design of antibacterial hydrogels for in situ detection of metal nanoparticles, an in-situ detection platform based on the fluorescence signal change caused by the potential surface energy transfer of silver nanoparticles (AgNPs) and carbon dots (CD) through silver mirror reaction and Schiff base reaction was established. The antimicrobial test results show that the composite antimicrobial hydrogel, with lower dosages of AgNPs and CD, exhibited a higher inhibition rate of 99.1 % against E. coli and 99.8 % against S. aureus compared to the single antimicrobial component. This suggests a potential synergistic antimicrobial activity. Furthermore, the fluorescence detection platform was established with a difference of <3 µg between detected values and actual values over a period of 72 h. This demonstrates the excellent in situ detection capability of the hydrogel in antimicrobial-related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA